
pmid: 2823898
The protein sequencing of tryptic peptides from purified human lecithin: cholesterol acyltransferase (LCAT) identified sufficient amino-acid sequence to construct a corresponding mixed oligonucleotide probe. This was used to screen an adult human cDNA liver library, from which incomplete cDNA clones were isolated. The DNA sequence of these clones allows the prediction of the entire amino-acid sequence of the mature LCAT enzyme. The mature protein consists of 416 amino acids and contains several marked stretches of hydrophobic residues and four potential glycosylation sites. The cDNA probe detects LCAT mRNA sequences approx. 1500 bases long in human liver, but not intestine, RNA. The cDNA probe was used to isolate LCAT genomic recombinants from a human genomic library. Southern blotting data, and restriction site mapping, suggest that there is a single human LCAT structural gene between 4.3 and 5.5 kb in size.
Base Sequence, Molecular Sequence Data, DNA, DNA Restriction Enzymes, Peptide Fragments, Phosphatidylcholine-Sterol O-Acyltransferase, Genes, Humans, Amino Acid Sequence, Cloning, Molecular, Plasmids
Base Sequence, Molecular Sequence Data, DNA, DNA Restriction Enzymes, Peptide Fragments, Phosphatidylcholine-Sterol O-Acyltransferase, Genes, Humans, Amino Acid Sequence, Cloning, Molecular, Plasmids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
