Views provided by UsageCounts
handle: 11572/284586 , 11380/1264567
In this paper we address the problem of unsupervised gaze correction in the wild, presenting a solution that works without the need for precise annotations of the gaze angle and the head pose. We have created a new dataset called CelebAGaze, which consists of two domains X, Y, where the eyes are either staring at the camera or somewhere else. Our method consists of three novel modules: the Gaze Correction module (GCM), the Gaze Animation module (GAM), and the Pretrained Autoencoder module (PAM). Specifically, GCM and GAM separately train a dual in-painting network using data from the domain $X$ for gaze correction and data from the domain $Y$ for gaze animation. Additionally, a Synthesis-As-Training method is proposed when training GAM to encourage the features encoded from the eye region to be correlated with the angle information, resulting in a gaze animation which can be achieved by interpolation in the latent space. To further preserve the identity information~(e.g., eye shape, iris color), we propose the PAM with an Autoencoder, which is based on Self-Supervised mirror learning where the bottleneck features are angle-invariant and which works as an extra input to the dual in-painting models. Extensive experiments validate the effectiveness of the proposed method for gaze correction and gaze animation in the wild and demonstrate the superiority of our approach in producing more compelling results than state-of-the-art baselines. Our code, the pretrained models and the supplementary material are available at: https://github.com/zhangqianhui/GazeAnimation.
Accepted By ACMMM 2020
FOS: Computer and information sciences, Computer Science - Graphics, deep learning; gaze animation; gaze correction; generative adversarial networks; image translation;, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing, Graphics (cs.GR)
FOS: Computer and information sciences, Computer Science - Graphics, deep learning; gaze animation; gaze correction; generative adversarial networks; image translation;, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing, Graphics (cs.GR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 130 |

Views provided by UsageCounts