
In this paper, we investigate eigenvalues of fractional Laplacian (–Δ)α/2|D, where α ∈ (0, 2], on a bounded domain in an n-dimensional Euclidean space and obtain a sharper lower bound for the sum of its eigenvalues, which improves some results due to Yildirim Yolcu and Yolcu in [Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math. 15(3) (2013) 1250048]. In particular, for the case of Laplacian, we obtain a sharper eigenvalue inequality, which gives an improvement of the result due to Melas in [A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131 (2003) 631–636].
eigenvalues, Estimates of eigenvalues in context of PDEs, fractional Laplacian, Laplacian, lower bound
eigenvalues, Estimates of eigenvalues in context of PDEs, fractional Laplacian, Laplacian, lower bound
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
