
The stationary spherically symmetric accretion flow in the Schwarzschild metric has been set up as an autonomous first-order dynamical system, and it has been studied completely analytically. Of the three possible critical points in the flow, the one that is physically realistic behaves like the saddle point of the standard Bondi accretion problem. One of the two remaining critical points exhibits the strange mathematical behaviour of being either a saddle point or a centre-type point, depending on the values of the flow parameters. The third critical point is always unphysical and behaves like a centre-type point. The treatment has been extended to pseudo-Schwarzschild flows for comparison with the general relativistic analysis.
8 pages, 4 figures, mn2e.cls used
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
