Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme

Authors: Kayle Kish; Heather Kegg; Carlton M. Bates; Deepali Pitre Poladia; Haotian Zhao; Benjamin Kutay; David S. Hains;

Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme

Abstract

To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model.

Related Organizations
Keywords

Mice, Knockout, Gene Expression Profiling, PAX2 Transcription Factor, Apoptosis, Cell Biology, Kidney, Mesoderm, Mice, In Situ Nick-End Labeling, Animals, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Molecular Biology, Developmental Biology, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    163
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
163
Top 10%
Top 10%
Top 10%
hybrid