Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biochemistry
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neuregulin induces CTGF expression in hypertrophic scarring fibroblasts

Authors: Je Hoon Jeong; BoungChul Lee; Jun-Sub Kim; Cheong Hoon Seo; Jae-Bong Park; Ihn-Geun Choi; Jin-Hee Kim; +1 Authors

Neuregulin induces CTGF expression in hypertrophic scarring fibroblasts

Abstract

Hypertrophic scarring (HTS) is a common fibroproliferative disorder that typically follows thermal and other injuries involving the deep dermis. These pathogenic mechanisms are regulated by connective tissue growth factor (CTGF) and transforming growth factor-β. We found that neuregulin-1 (NRG1), as well as NRG receptors, HER-2, and HER-3 were upregulated in HTS fibroblasts (HTSF), compared with normal fibroblasts. Furthermore, NRG1 stimulation increased the expression of CTGF in HTSF. In the presence of inhibitors of PI3K, Src, Smad, or reactive oxygen species, the effect of NRG1 on CTGF expression decreased significantly. In particular, the combination of LY294002 or PP2 with SB431542 blocked NRG1-mediated CTGF expression in HTSF. Finally, we demonstrated that siRNA for CTGF, AG825, LY294002, and PP2, either alone or in co-treatment, effectively reduced extracellular matrix expression. Taken together, our results suggest that NRG1 is involved in fibrotic scar pathogenesis via PI3K- or Src-mediated CTGF expression.

Related Organizations
Keywords

Transcriptional Activation, Cicatrix, Hypertrophic, Transcription, Genetic, Neuregulin-1, Connective Tissue Growth Factor, Fibroblasts, Extracellular Matrix, Phosphatidylinositol 3-Kinases, src-Family Kinases, Gene Expression Regulation, Humans, RNA, Messenger, Burns, Cells, Cultured, Signal Transduction, Skin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!