Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2007
versions View all 3 versions
addClaim

Evaluation of a Diffusion-Driven Mechanism for Substrate Ubiquitination by the SCF-Cdc34 Ubiquitin Ligase Complex

Authors: Petroski, Matthew D.; Kleiger, Gary; Deshaies, Raymond J.;

Evaluation of a Diffusion-Driven Mechanism for Substrate Ubiquitination by the SCF-Cdc34 Ubiquitin Ligase Complex

Abstract

Release of ubiquitin-charged Cdc34 from the SCF ubiquitin ligase followed by diffusion-driven collision with substrate has been proposed to underlie ubiquitination of the canonical SCF substrate Sic1. Cdc34 F72V, reported to be defective in dissociation from SCF, served as key validation. Here, we test predictions of this "hit-and-run" hypothesis. We find that Cdc34 F72V is generally defective in SCF-mediated activation but, contrary to expectation, does not compete with wild-type Cdc34 in vitro or in vivo and can fulfill the physiological role of Cdc34 with only moderate delay in Sic1 turnover. Whereas a hit-and-run mechanism might explain how Cdc34 can transfer ubiquitin to the ends of growing ubiquitin chains on SCF-bound substrates, molecular modeling suggests that an E2 docked to SCF can do so without dissociating. We propose that interactions between Cdc34 approximately Ub and SCF directly activate ubiquitin transfer within a substrate-SCF-Cdc34 approximately Ub ternary complex.

Related Organizations
Keywords

Models, Molecular, Stem Cell Factor, Saccharomyces cerevisiae Proteins, Ubiquitin-Protein Ligase Complexes, Cell Biology, Saccharomyces cerevisiae, Models, Biological, Anaphase-Promoting Complex-Cyclosome, Diffusion, Ubiquitin-Conjugating Enzymes, Molecular Biology, Ubiquitins, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
hybrid