Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CSN maintains the germline cellular microenvironment and controls the level of stem cell genes via distinct CRLs in testes of Drosophila melanogaster

Authors: Cordula Schulz; Chun L. Ng; Yue Qian;

CSN maintains the germline cellular microenvironment and controls the level of stem cell genes via distinct CRLs in testes of Drosophila melanogaster

Abstract

Stem cells and their daughters are often associated with and depend on cues from their cellular microenvironment. In Drosophila testes, each Germline Stem Cell (GSC) contacts apical hub cells and is enclosed by cytoplasmic extensions from two Cyst Stem Cells (CySCs). Each GSC daughter becomes enclosed by cytoplasmic extensions from two CySC daughters, called cyst cells. CySC fate depends on an Unpaired (Upd) signal from the hub cells, which activates the Janus Kinase and Signal Transducer and Activator of Transcription (Jak/STAT) pathway in the stem cells. Germline enclosure depends on Epidermal Growth Factor (EGF) signals from the germline to the somatic support cells. Expression of RNA-hairpins against subunits of the COnstitutively Photomorphogenic-9- (COP9-) signalosome (CSN) in somatic support cells disrupted germline enclosure. Furthermore, CSN-depleted somatic support cells in the CySC position next to the hub had reduced levels of the Jak/STAT effectors Zinc finger homeotic-1 (Zfh-1) and Chronologically inappropriate morphogenesis (Chinmo). Knockdown of CSN in the somatic support cells does not disrupt EGF and Upd signal transduction as downstream signal transducers, phosphorylated STAT (pSTAT) and phosphorylated Mitogen Activated Protein Kinase (pMAPK), were still localized to the somatic support cell nuclei. The CSN modifies fully formed Cullin RING ubiquitin ligase (CRL) complexes to regulate selective proteolysis. Reducing cullin2 (cul2) from the somatic support cells disrupted germline enclosure, while reducing cullin1 (cul1) from the somatic support cells led to a low level of Chinmo. We propose that different CRLs enable the responses of somatic support cells to Upd and EGF.

Related Organizations
Keywords

Male, Cytoplasm, MAP Kinase Signaling System, Nerve Tissue Proteins, Stem cells, CSN, Cellular microenvironment, Animals, Drosophila Proteins, Cell Lineage, Molecular Biology, Crosses, Genetic, Janus Kinases, Cell Biology, Cullin Proteins, CRL, Repressor Proteins, STAT Transcription Factors, Drosophila melanogaster, Germ Cells, Phenotype, Microscopy, Fluorescence, Mutation, RNA, RNA Interference, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
hybrid