Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universiteit van Ams...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of High Energy Physics
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of High Energy Physics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of High Energy Physics
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

5d partition functions with a twist

Authors: Crichigno, P.M.; Jain, D.; Willett, B.;

5d partition functions with a twist

Abstract

Abstract We derive the partition function of 5d $$ \mathcal{N}=1 $$ N = 1 gauge theories on the manifold $$ {S}_b^3 \times {\varSigma}_{\mathfrak{g}} $$ S b 3 × Σ g with a partial topological twist along the Riemann surface, $$ {\varSigma}_{\mathfrak{g}} $$ Σ g . This setup is a higher dimensional uplift of the two-dimensional A-twist, and the result can be expressed as a sum over solutions of Bethe-Ansatz-type equations, with the computation receiving nontrivial non-perturbative contributions. We study this partition function in the large N limit, where it is related to holographic RG flows between asymptotically locally AdS6 and AdS4 spacetimes, reproducing known holographic relations between the corresponding free energies on S 5 and S 3 and predicting new ones. We also consider cases where the 5d theory admits a UV completion as a 6d SCFT, such as the maximally supersymmetric $$ \mathcal{N}=2 $$ N = 2 Yang-Mills theory, in which case the partition function computes the 4d index of general class S theories, which we verify in certain simplifying limits. Finally, we comment on the generalization to $$ {\mathrm{\mathcal{M}}}_3 \times {\varSigma}_{\mathfrak{g}} $$ ℳ 3 × Σ g with more general three-manifolds ℳ3 and focus in particular on $$ {\mathrm{\mathcal{M}}}_3 = {\varSigma}_{\mathfrak{g}}^{\prime}\times {S}^1 $$ ℳ 3 = Σ g ′ × S 1 , in which case the partition function relates to the entropy of black holes in AdS6.

Keywords

High Energy Physics - Theory, Black holes, holographic RG flow, FOS: Physical sciences, QC770-798, AdS-CFT Correspondence, Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism, 530, Two-dimensional field theories, conformal field theories, etc. in quantum mechanics, Supersymmetric Gauge Theory, Applications of differential geometry to physics, Renormalization group methods applied to problems in quantum field theory, AdS-CFT correspondence, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, Yang-Mills and other gauge theories in mechanics of particles and systems, Supersymmetric field theories in quantum mechanics, entropy of black holes, supersymmetric theory, Yang-Mills theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 1%
Green
Published in a Diamond OA journal