Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

Particle Acceleration by Pickup Process Upstream of Relativistic Shocks

Authors: Masanori Iwamoto; Takanobu Amano; Yosuke Matsumoto; Shuichi Matsukiyo; Masahiro Hoshino;

Particle Acceleration by Pickup Process Upstream of Relativistic Shocks

Abstract

Abstract Particle acceleration at magnetized purely perpendicular relativistic shocks in electron–ion plasmas is studied by means of two-dimensional particle-in-cell simulations. Magnetized shocks with the upstream bulk Lorentz factor γ 1 ≫ 1 are known to emit intense electromagnetic waves from the shock front, which induce electrostatic plasma waves (wakefield) and transverse filamentary structures in the upstream region via stimulated/induced Raman scattering and filamentation instability, respectively. The wakefield and filaments inject a fraction of the incoming particles into a particle acceleration process, in which particles are once decoupled from the upstream bulk flow by the wakefield, and are picked up again by the flow. The picked-up particles are accelerated by the motional electric field. The maximum attainable Lorentz factor is estimated as γ max , e ∼ α γ 1 3 for electrons and γ max , i ∼ ( 1 + m e γ 1 / m i ) γ 1 2 for ions, where α ∼ 10 is determined from our simulation results. α can increase up to γ 1 for a weakly magnetized shock if γ 1 is sufficiently large. This result indicates that highly relativistic astrophysical shocks such as external shocks of gamma-ray bursts can be an efficient particle accelerator.

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), Plasma Physics (physics.plasm-ph), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, Physics - Plasma Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold