Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article
Data sources: UnpayWall
Diabetes
Article . 2003 . Peer-reviewed
Data sources: Crossref
Diabetes
Article . 2003
HKU Scholars Hub
Article . 2012
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Microsomal Triglyceride Transfer Protein Gene by Insulin in HepG2 Cells

Authors: Kung, HF; Au, WS; Lin, MC;

Regulation of Microsomal Triglyceride Transfer Protein Gene by Insulin in HepG2 Cells

Abstract

Microsomal triglyceride transfer protein (MTP) is rate limiting for the assembly and secretion of apolipoprotein B-containing lipoproteins. Elevated hepatic MTP mRNA level, presumably as a result of impaired insulin signaling, has been implicated in the pathophysiology of dyslipidemia associated with insulin resistance/type 2 diabetes. In this study, we showed that insulin decreases MTP mRNA level mainly through transcriptional regulation in HepG2 cells. We further characterized the corresponding signal transduction pathway, using chemical inhibitors and constitutively active and dominant negative forms of regulatory enzymes. We demonstrated that insulin inhibits MTP gene transcription through MAPKerk cascade but not through the PI 3-kinase pathway. Activation of ras through farnesylation is not a prerequisite for the inhibition. In addition, cellular MAPKerk and MAPKp38 activities play a counterbalancing role in regulating the MTP gene transcription. These complex regulations may represent a means to fine-tuning MTP gene transcription in response to a diverse set of environmental stimuli and may have important implications for the onset and development of diabetes-associated dyslipidemia.

Related Organizations
Keywords

571, Carcinoma, Hepatocellular, Transcription, Genetic, Messenger - Genetics, Promoter Regions, Genetic - Drug Effects, p38 Mitogen-Activated Protein Kinases, Microsomes - Metabolism, Promoter Regions, Genetic, Genetic - Drug Effects, Microsomes, Tumor Cells, Cultured, Humans, Insulin, RNA, Messenger, Promoter Regions, Genetic, Neoplastic, Cultured, Carcinoma, Liver Neoplasms, Hepatocellular, Mitogen-Activated Protein Kinases - Metabolism, Carrier Proteins - Drug Effects - Genetics, P38 Mitogen-Activated Protein Kinases, Tumor Cells, Gene Expression Regulation, Neoplastic, Kinetics, Gene Expression Regulation, Insulin - Pharmacology, Rna, Mitogen-Activated Protein Kinases, Carrier Proteins, Transcription, Rna, Messenger - Genetics, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 10%
Top 10%
bronze