Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DP-GAN

Dual Pathway Generative Adversarial Network for Face Recognition in Degraded Scenarios
Authors: Avishek Bhattacharjee; Samik Banerjee; Sukhendu Das;
Abstract

Face Recognition (FR) using Convolutional Neural Network (CNN) based models have achieved considerable success in constrained environments. They however fail to perform well in unconstrained scenarios, especially when the images are captured using surveillance cameras. These probe samples suffer from degradations such as noise, poor illumination, low resolution, blur as well as aliasing, when compared to the rich training (gallery) set, comprising mostly of mugshot images captured in laboratory settings. These images in the training (gallery) set are crisp and have high contrast, compared to the probe samples. To cope with this scenario, we propose a novel dual-pathway generative adversarial network (DP-GAN) which maps low resolution images captured using surveillance camera into their corresponding high resolution images, which are gallery-like, using a novel combination of multi-scale reconstruction and Jensen-Shannon divergence based loss. These images thus obtained are then used to train a deep domain adaptation (deep-DA) network to perform the task of FR. The proposed network achieves superior results (>90%) on four benchmark surveillance face datasets, evident from the rank-1 recognition rates when compared with recent state-of-the-art CNN-based techniques.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!