Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biochemistry
Article . 1979 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular aspects of cytochrome c oxidase: Structure and dynamics

Authors: Angelo Azzi; Robert P. Casey;

Molecular aspects of cytochrome c oxidase: Structure and dynamics

Abstract

In the last few years much attention has been dedicated to the elucidation of some of the molecular aspects of cytochrome c oxidase. It has been shown conclusively that the enzyme from several sources (yeast, Neurospora, heart, liver) contains seven different subunits, which are asymmetrically inserted in the membrane. All of these are in contact with the lipid bilayer (except subunits V and VI) and to a greater or lesser extent with the water phase as well (except for subunit I). Subunit II of the enzyme appears to be involved in the formation of the binding site of cytochrome c. The location of the redox groups of the enzyme is still a matter of controversy. Their distance from the cytochrome c heme group is approximately 35 A such that electron tunneling appears to be the only possible mechanism for transporting electrons across such a distance. A proton pump appears to be associated with electron transport and approximately one proton is extruded per electron equivalent reducing oxygen via the enzyme. N,N', dicyclohexylcarbodiimide a well-established inhibitor of H+-translocating ATPases inhibits the proton pump and labels specifically subunit III of the enzyme.

Related Organizations
Keywords

Azides, Neurospora crassa, Macromolecular Substances, Mitochondria, Liver, Heme, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Mitochondria, Heart, Rats, Electron Transport Complex IV, Molecular Weight, Kinetics, Species Specificity, Animals, Cattle, Oxidation-Reduction, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!