Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Theoretical Chemistr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Chemistry Accounts
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational evidence for the importance of lysine carboxylation in the reaction catalyzed by carboxyl transferase domain of pyruvate carboxylase: a QM/MM study

Authors: Xiang Sheng; Qianqian Hou; Yongjun Liu;

Computational evidence for the importance of lysine carboxylation in the reaction catalyzed by carboxyl transferase domain of pyruvate carboxylase: a QM/MM study

Abstract

Posttranslational modification is a critical process in the cellular regulation, an example of which is the carboxylation of lysine. Pyruvate carboxylase is an enzyme, in which a carboxylated lysine has been found in the metal coordination shell of the active center. In our previous study, the reaction mechanism of the carboxyl transferase domain of the pyruvate carboxylase from Staphylococcus aureus has been investigated by using QM/MM calculations. The suggested mechanism supports the previous proposal, and most of the results are consistent with the experimental data. However, the calculated overall barrier is too high for an enzymatic reaction, which may be the result of the used model failing to take into account the modification of the metal-coordinated lysine. Here, we present a successive study to investigate the importance of lysine carboxylation in the reaction and also to examine if the Zn-coordinated water molecule is required for the catalysis. The reaction mechanism from the new models is consistent with the previous suggestion. More importantly, the energy barriers of all elementary steps are calculated to be much lower than those in our previous work. Notably, the calculated barrier of the overall reaction is ~ 14 kcal/mol, which is in good agreement with the experimental value. Therefore, this study supplies a theoretical evidence for the importance of the modification of Zn-coordinated lysine in the pyruvate carboxylase-catalyzed reaction. In addition, the water molecule in the zinc coordination shell is suggested to contribute to the catalysis.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!