Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Document Server@UHas...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Document Server@UHasselt
Conference object . 2017
https://doi.org/10.5004/dwt.20...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activated carbon modification resulting in an enhanced Cr(VI) removal.

Authors: Vanderheyden, Sara; Yperman, Jan; Schreurs, Sonja; Carleer, Robert;

Activated carbon modification resulting in an enhanced Cr(VI) removal.

Abstract

ifferent activation procedures. Cr(VI) adsorption (10 mg/L, pH 2) on these ACs is compared to adsorption on commercial Norit GAC 1240 and Filtrasorb F400. The adsorption isotherms for both Cr (VI) and Cr total (Crtot) are determined for each AC, of which the best performing ones are chosen for kinetic experiments. The adsorption mechanism towards Cr(VI) is accompanied by its reduction to Cr(III), removing almost all Cr(VI) even at low dosages for all tested ACs. An optimal dosage (0.75 g AC/L) is found for each AC. For the best performing AC this dosage results in removal rates of over 99% of Cr(VI) and 88% of Crtot. The amount of reduced Cr(VI) increases with AC dosage, resulting in a higher Cr(III) equilibrium concentration above this optimal dosage. The redox reaction is more dominant in the commercial ACs. However, a faster removal rate for the ACBSGs for both Cr(VI) and Crtot is demonstrated.

Related Organizations
Keywords

activated carbon; brewer's spent grain; chromium; adsorption

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green