
Contributions, the products of hidden unit activations and weights, are presented as a viable tool for investigating the inner workings of neural nets. Using a scaled-down version of NETtalk, a fully automated method for summarizing in a compact form both local and distributed hidden-unit responsibilities is demonstrated. Contributions are shown to be more useful for ascertaining hidden-unit responsibilities than either weights or hidden-unit activations. Among the results yielded by contribution analysis: for the example net, redundant output units are handled by identical patterns of hidden units, and the amount of responsibility a hidden unit takes on is inversely proportional to the number of hidden units.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
