
doi: 10.4213/mzm13383
В статье рассматривается задача об отклонении от функции $f$ из пространства $W^r$ частичных сумм ряда Фурье по системе полиномов $\{\varphi_n(x)\}_{n=0}^\infty$, ортогональной относительно скалярного произведения типа Соболева. Здесь $\varphi_n(x)=(x+1)^n/n!$ при $0\leqslant n\leqslant r-1$ и $$ \varphi_n(x)=\frac{2^r}{(n+\alpha-r)^{[r]} \sqrt{h_{n-r}^{\alpha,0}}} P_n^{\alpha-r,-r}(x)\qquadпри\quad n\geqslant r, $$ где $P_n^{\alpha-r,-r}(x)$ - полином Якоби степени $n$. Основное внимание уделено получению оценки сверху для функции типа Лебега частичных сумм ряда Фурье по системе $\{\varphi_n(x)\}_{n=0}^\infty$. Библиография: 2 названия.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
