Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Big Data and Cogniti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Big Data and Cognitive Computing
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Big Data and Cognitive Computing
Article . 2023
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Comparative Study of Secure Outsourced Matrix Multiplication Based on Homomorphic Encryption

Authors: Mikhail G. Babenko; Elena Golimblevskaia; Andrei Tchernykh; Egor M. Shiriaev; Tatiana Ermakova; Luis Bernardo Pulido-Gaytan; Georgii V. Valuev; +2 Authors

A Comparative Study of Secure Outsourced Matrix Multiplication Based on Homomorphic Encryption

Abstract

Homomorphic encryption (HE) is a promising solution for handling sensitive data in semi-trusted third-party computing environments, as it enables processing of encrypted data. However, applying sophisticated techniques such as machine learning, statistics, and image processing to encrypted data remains a challenge. The computational complexity of some encrypted operations can significantly increase processing time. In this paper, we focus on the analysis of two state-of-the-art HE matrix multiplication algorithms with the best time and space complexities. We show how their performance depends on the libraries and the execution context, considering the standard Cheon–Kim–Kim–Song (CKKS) HE scheme with fixed-point numbers based on the Microsoft SEAL and PALISADE libraries. We show that Windows OS for the SEAL library and Linux OS for the PALISADE library are the best options. In general, PALISADE-Linux outperforms PALISADE-Windows, SEAL-Linux, and SEAL-Windows by 1.28, 1.59, and 1.67 times on average for different matrix sizes, respectively. We derive high-precision extrapolation formulas to estimate the processing time of HE multiplication of larger matrices.

Keywords

Technology, T, matrix multiplication, homomorphic encryption, CKKS; homomorphic encryption; homomorphic encryption standard; matrix multiplication; PALISADE; SEAL, CKKS, homomorphic encryption standard, PALISADE, SEAL

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold