Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.1101/543413...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The molecular basis of hypercontractility caused by the hypertrophic cardiomyopathy mutations R403Q and R663H

Authors: Sarkar, Saswata S.; Trivedi, Darshan V.; Morck, Makenna M.; Adhikari, Arjun S.; Pasha, Shaik N.; Ruppel, Kathleen M.; Spudich, James A.;

The molecular basis of hypercontractility caused by the hypertrophic cardiomyopathy mutations R403Q and R663H

Abstract

AbstractHypertrophic cardiomyopathy (HCM) mutations in ß-cardiac myosin and myosin binding protein-C (MyBP-C) cause hypercontractility of the heart. We show that hypercontractility caused by the HCM myosin mutation R663H cannot be explained by changes in the fundamental parameters such as actin-activated ATPase, intrinsic force, velocity of pure actin or regulated thin filaments, or the pCa50 of the velocity of regulated thin filaments. The same conclusion was made earlier for the HCM myosin mutation R403Q (Nag et al. 2015). Using enzymatic assays for the number of functionally-available heads in purified human ß-cardiac myosin preparations, we provide evidence that both R403Q and R663H HCM myosin mutations cause hypercontractility by increasing the number of functionally-accessible myosin heads. We also demonstrate that the myosin mutation R403Q, but not R663H, ablates the binding of myosin with the C0-C7 fragment of myosin binding protein-C.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green