Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determining regularities in the distribution of noise load from motorways and road bridges depending on the distance to a residential area

Authors: Sergii Laslov; Oleksndr Tokin; Artur Onyshchenko;

Determining regularities in the distribution of noise load from motorways and road bridges depending on the distance to a residential area

Abstract

This paper reports the improved model for estimating transport noise from highways at a roadside lane under the influence of noise load from traffic flow moving on an open section of the highway and over a bridge. It has been established that with an increase in the distance from the sound source to the coordinates of the noise load measurement, the noise decreases, both in the presence of a noise-protective screen and in the case of an open section of the highway. At 100 m from the sound source, the noise load level decreases by 13.4 % in the case of the car moving over a bridge, and by 13.3 % when driving a car along an open section of the road. It has been found that the noise level on bridges exceeds the level of noise pollution from the road to 10 dB, which is explained by the propagation of different frequencies of noise load from the bridge. It has been determined that due to the special nature of sound waves, diffraction through noise screens does not change all frequencies evenly. High frequencies diffract to a smaller degree while lower frequencies diffract deeper into the "shadow" zone behind the screen. Therefore, the screen is more effective at reducing sound waves with a high frequency compared to sound waves with lower frequencies. Experimental studies into the effectiveness of noise-protective screens made of metal perforated structures on sections of public roads were carried out, taking into consideration distances from noise sources to noise load measurement sites. It is established that noise-proof screens made of steel (perforated) sheet reduce the level of noise load from vehicles to the environment by up to 14 %. It was found that when driving cars on the road, the equivalent sound level at a distance of 1 m in front of the noise protection screen is 88.6 dBA while the maximum sound level at a distance of 1 m in front of the noise protection screen is 103.9 dBA. It has been established that in the presence of a drain hole in the noise protection screen, its acoustic efficiency is reduced to 3 dBA.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 6
  • 3
    views
    6
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
3
6
gold