Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Visual Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Visual Neuroscience
Article . 2002 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co-expression of murine opsins facilitates identifying the site of cone adaptation

Authors: J Hargitai; Peter Gouras; Björn Ekesten;

Co-expression of murine opsins facilitates identifying the site of cone adaptation

Abstract

Murine cones contain two opsins in the same cone, one ultraviolet (UV) and the other middle-wavelength sensitive (M). A long-wavelength flash only affecting M-opsin suppresses the cone electroretinogram (ERG) produced by light absorption of UV-cone opsin raising the hypothesis that activation of M-cone opsin suppresses UV-cone opsin responses in the same cone. Here we show that pharmacologic blockade of synaptic transmission in the superfused murine retina, which eliminates interaction from second-order neurons, fails to prevent suppression of the UV-opsin driven pathway by long-wavelength stimuli. This proves that the antagonism must be occurring in the same cone, co-expressing both opsins. Our results show that UV-opsin suppression successively ceases in presence of the M-opsin activating background light, which implies that cone light adaptation is controlled at the opsin stage, before activation of transducin. It also reveals the time course of a transient desensitization of cones due to post-opsin factors in the transduction cascade.

Related Organizations
Keywords

Mice, Light, Adaptation, Ocular, Ultraviolet Rays, Retinal Cone Photoreceptor Cells, Rod Opsins, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?