<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 10221902
Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development. Signals exchanged between neighboring cells through the Notch receptor can amplify and consolidate molecular differences, which eventually dictate cell fates. Thus, Notch signals control how cells respond to intrinsic or extrinsic developmental cues that are necessary to unfold specific developmental programs. Notch activity affects the implementation of differentiation, proliferation, and apoptotic programs, providing a general developmental tool to influence organ formation and morphogenesis.
Cell Nucleus, Receptors, Notch, Transcription, Genetic, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Apoptosis, Receptors, Cell Surface, Cell Communication, Ligands, Animals, Humans, Cell Division, Signal Transduction
Cell Nucleus, Receptors, Notch, Transcription, Genetic, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Apoptosis, Receptors, Cell Surface, Cell Communication, Ligands, Animals, Humans, Cell Division, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5K | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.01% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.01% |