Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

PDEF, a Novel Prostate Epithelium-specific Ets Transcription Factor, Interacts with the Androgen Receptor and Activates Prostate-specific Antigen Gene Expression

Authors: P, Oettgen; E, Finger; Z, Sun; Y, Akbarali; U, Thamrongsak; J, Boltax; F, Grall; +8 Authors

PDEF, a Novel Prostate Epithelium-specific Ets Transcription Factor, Interacts with the Androgen Receptor and Activates Prostate-specific Antigen Gene Expression

Abstract

Prostate cancer, the most frequent solid cancer in older men, is a leading cause of cancer deaths. Although proliferation and differentiation of normal prostate epithelia and the initial growth of prostate cancer cells are androgen-dependent, prostate cancers ultimately become androgen-independent and refractory to hormone therapy. The prostate-specific antigen (PSA) gene has been widely used as a diagnostic indicator for androgen-dependent and -independent prostate cancer. Androgen-induced and prostate epithelium-specific PSA expression is regulated by a proximal promoter and an upstream enhancer via several androgen receptor binding sites. However, little progress has been made in identifying androgen-independent regulatory elements involved in PSA gene regulation. We report the isolation of a novel, prostate epithelium-specific Ets transcription factor, PDEF (prostate-derived Ets factor), that among the Ets family uniquely prefers binding to a GGAT rather than a GGAA core. PDEF acts as an androgen-independent transcriptional activator of the PSA promoter. PDEF also directly interacts with the DNA binding domain of androgen receptor and enhances androgen-mediated activation of the PSA promoter. Our results, as well as the critical roles of other Ets factors in cellular differentiation and tumorigenesis, strongly suggest that PDEF is an important regulator of prostate gland and/or prostate cancer development.

Keywords

Keratinocytes, Male, Transcriptional Activation, Binding Sites, Base Sequence, Proto-Oncogene Proteins c-ets, Sequence Homology, Amino Acid, Molecular Sequence Data, Prostate, Prostate-Specific Antigen, Recombinant Proteins, Cell Line, Gene Expression Regulation, Proto-Oncogene Proteins, Humans, Amino Acid Sequence, Promoter Regions, Genetic, Sequence Alignment, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    250
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
250
Top 10%
Top 1%
Top 1%
gold