Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 1995
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1995 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 1995
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The MIM complex mediates preprotein translocationacross the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system

Authors: Berthold, Jutta; Bauer, Matthias F.; Schneider, Hans-Christoph; Klaus, Christian; Dietmeier, Klaus; Neupert, Walter; Brunner, Michael;

The MIM complex mediates preprotein translocationacross the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system

Abstract

We have identified a complex in mitochondria that functions as a part of the preprotein import machinery of the inner membrane (MIM complex). Two known components, MIM23 and MIM17, and two novel components, MIM33 and MIM14, were found as constituents of this complex. In the presence of a translocating chain, the outer membrane import machinery (MOM complex) and the MIM complex form translocation contact sites. On the matrix side, the MIM complex is associated with the mt-Hsp70-MIM44 system. We propose a structure of the import machinery in which the MIM complex constitutes a proteinaceous channel that accepts preproteins from the MOM complex, facilitates their reversible transmembrane movement, and mediates unidirectional transport by linkage to the ATP-dependent mt-Hsp70-MIM44 system.

Related Organizations
Keywords

Base Sequence, Biochemistry, Genetics and Molecular Biology(all), Molecular Sequence Data, Membrane Proteins, Membrane Transport Proteins, Intracellular Membranes, Mitochondrial Membrane Transport Proteins, Polymerase Chain Reaction, Mitochondria, Fungal Proteins, Repressor Proteins, Adenosine Triphosphate, Mitochondrial Precursor Protein Import Complex Proteins, Escherichia coli, HSP70 Heat-Shock Proteins, Cloning, Molecular, Genome, Fungal, Protein Precursors, Carrier Proteins, Protein Processing, Post-Translational, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    166
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
166
Top 10%
Top 1%
Top 1%
hybrid