
pmid: 9287210
STATs (signal transducers and activators of transcription) are a family of latent cytoplasmic proteins that are activated to participate in gene control when cells encounter various extracellular polypeptides. Biochemical and molecular genetic explorations have defined a single tyrosine phosphorylation site and, in a dimeric partner molecule, an Src homology 2 (SH2) phosphotyrosine-binding domain, a DNA interaction domain, and a number of protein-protein interaction domains (with receptors, other transcription factors, the transcription machinery, and perhaps a tyrosine phosphatase). Mouse genetics experiments have defined crucial roles for each known mammalian STAT. The discovery of a STAT in Drosophila , and most recently in Dictyostelium discoideum , implies an ancient evolutionary origin for this dual-function set of proteins.
Transcriptional Activation, Nuclear Proteins, DNA, DNA-Binding Proteins, src Homology Domains, Gene Expression Regulation, Trans-Activators, Animals, Humans, Phosphorylation, Phosphotyrosine, Dimerization, Signal Transduction
Transcriptional Activation, Nuclear Proteins, DNA, DNA-Binding Proteins, src Homology Domains, Gene Expression Regulation, Trans-Activators, Animals, Humans, Phosphorylation, Phosphotyrosine, Dimerization, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.01% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.01% |
