Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rescue of ΔF508-CFTR by the SGK1/Nedd4-2 Signaling Pathway

Authors: Hung, Caohuy; Catherine, Jozwik; Harvey B, Pollard;

Rescue of ΔF508-CFTR by the SGK1/Nedd4-2 Signaling Pathway

Abstract

The most common mutation in cystic fibrosis (CF) is DeltaF508, which is associated with failure of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) to traffic to the plasma membrane. By a still unknown mechanism, the loss of correctly trafficked DeltaF508-CFTR results in an excess of the epithelial sodium channel (ENaC) on the apical plasma membrane. ENaC trafficking is known to be regulated by a signaling pathway involving the glucocorticoid receptor, the serum- and glucocorticoid-regulated kinase SGK1, and the ubiquitin E3 ligase Nedd4-2. We show here that dexamethasone rescues functional expression of DeltaF508-CFTR. The half-life of DeltaF508-CFTR is also dramatically enhanced. Dexamethasone-activated DeltaF508-CFTR rescue is blocked either by the glucocorticoid receptor antagonist RU38486 or by the phosphatidylinositol 3-kinase inhibitor LY294002. Co-immunoprecipitation studies indicate that Nedd4-2 binds to both wild-type- and DeltaF508-CFTR. These complexes are inhibited by dexamethasone treatment, and CFTR ubiquitination is concomitantly decreased. We further show that knockdown of Nedd4-2 by small interfering RNA also corrects DeltaF508-CFTR trafficking. Conversely, knockdown of SGK1 by small interfering RNA completely blocks dexamethasone-activated DeltaF508-CFTR rescue. These data suggest that the SGK1/Nedd4-2 signaling pathway regulates both CFTR and ENaC trafficking in CF epithelial cells.

Keywords

Endosomal Sorting Complexes Required for Transport, Nedd4 Ubiquitin Protein Ligases, Ubiquitin-Protein Ligases, Cystic Fibrosis Transmembrane Conductance Regulator, Biological Transport, Protein Serine-Threonine Kinases, Models, Biological, Dexamethasone, Immediate-Early Proteins, Microscopy, Fluorescence, Mutation, Humans, Biotinylation, Enzyme Inhibitors, Phosphorylation, Epithelial Sodium Channels, Glucocorticoids, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
gold