Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MPG.PuRe
Article . 2010
Data sources: MPG.PuRe
Development
Article . 2010 . Peer-reviewed
Data sources: Crossref
Development
Article . 2010
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A conditional mutation in Arabidopsis thaliana separase induces chromosome non-disjunction, aberrant morphogenesis and cyclin B1;1 stability

Authors: Wu, S; Scheible, WR; Schindelasch, D; Van Den Daele, H; De Veylder, L; Baskin, TI;

A conditional mutation in Arabidopsis thaliana separase induces chromosome non-disjunction, aberrant morphogenesis and cyclin B1;1 stability

Abstract

The caspase family protease, separase, is required at anaphase onset to cleave the cohesin complex, which joins sister chromatids. However, among eukaryotes, separases have acquired novel functions. Here, we show that Arabidopsis thaliana radially swollen 4 (rsw4), a temperature-sensitive mutant isolated previously on the basis of root swelling, harbors a mutation in At4g22970, the A. thaliana separase. Loss of separase function in rsw4 at the restrictive temperature is indicated by the widespread failure of replicated chromosomes to disjoin. Surprisingly, rsw4 has neither pronounced cell cycle arrest nor anomalous spindle formation, which occur in other eukaryotes upon loss of separase activity. However, rsw4 roots have disorganized cortical microtubules and accumulate the mitosis-specific cyclin, cyclin B1;1, excessive levels of which have been associated with altered microtubules and morphology. Cyclin B1;1 also accumulates in certain backgrounds in response to DNA damage, but we find no evidence for aberrant responses to DNA damage in rsw4. Our characterization of rsw4 leads us to hypothesize that plant separase, in addition to cleaving cohesin, regulates cyclin B1;1, with profound ramifications for morphogenesis.

Country
United States
Keywords

Arabidopsis thaliana, Chromosomal Proteins, Non-Histone, Arabidopsis, Mitosis, Cell Cycle Proteins, Cyclin B, Plant Roots, Microtubules, Chromosomes, Plant, Nondisjunction, Genetic, Gene Expression Regulation, Plant, Endopeptidases, Morphogenesis, Protein Isoforms, Cloning, Molecular, Biology, Separase, 580, Arabidopsis Proteins, Protein Stability, Temperature, radially swollen 4, Gene Expression Regulation, Developmental, Plants, Genetically Modified, Root morphology, Mutation, DNA damage, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
bronze