<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In many experimental models and clinical examples, defects in the differentiation of the second heart field (SHF) and heart outflow tract septation defects are combined, although the mechanistic basis for this relationship has been unclear. We found that as the initial SHF population incorporates into the outflow tract, it is replenished from the surrounding progenitor territory. In retinoic acid (RA) receptor mutant mice, this latter process fails, and the outflow tract is shortened and misaligned as a result. As an additional consequence, the outflow tract is misspecified along its proximal-distal axis, which results in ectopic expression of TGFbeta2 and ectopic mesenchymal transformation of the endocardium. Reduction of TGFbeta2 gene dosage in the RA receptor-deficient background restores septation but does not rescue alignment defects, indicating that excess TGFbeta causes septation defects. This may be a common pathogenic pathway when second heart field and septation defects are coupled.
Mice, Knockout, Receptors, Retinoic Acid, Myocardium, HUMDISEASE, Gene Dosage, Gene Expression Regulation, Developmental, DEVBIO, Heart, Mice, Transgenic, Tretinoin, Mice, Mutant Strains, Mice, Transforming Growth Factor beta2, Pregnancy, Animals, Female, Developmental Biology, Body Patterning, Signal Transduction
Mice, Knockout, Receptors, Retinoic Acid, Myocardium, HUMDISEASE, Gene Dosage, Gene Expression Regulation, Developmental, DEVBIO, Heart, Mice, Transgenic, Tretinoin, Mice, Mutant Strains, Mice, Transforming Growth Factor beta2, Pregnancy, Animals, Female, Developmental Biology, Body Patterning, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 82 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |