Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression of adenine nucleotide translocator parallels maturation of respiratory control in heart in vivo

Authors: M A, Portman; Y, Xiao; Y, Song; X H, Ning;

Expression of adenine nucleotide translocator parallels maturation of respiratory control in heart in vivo

Abstract

Changes in the relationship between myocardial high-energy phosphates and oxygen consumption in vivo occur during development, implying that the mode of respiratory control undergoes maturation. We hypothesized that these maturational changes in sheep heart are paralleled by alterations in the adenine nucleotide translocator (ANT), which are in turn related to changes in the expression of this gene. Increases in myocardial oxygen consumption (MV˙o2) were induced by epinephrine infusion in newborn (0–32 h, n = 6) and mature sheep (30–32 days, n = 6), and high-energy phosphates were monitored with31P nuclear magnetic resonance. Western blot analyses for the ANT1and the β-subunit of F1-adenosinetriphosphatase (ATPase) were performed in these hearts and additional ( n = 9 total per group) as well as in fetal hearts (130–132 days of gestation, n = 5). Northern blot analyses were performed to assess for changes in steady-state RNA transcripts for these two genes. Kinetic analyses for the31P spectra data revealed that the ADP-MV˙o2relationship for the newborns conformed to a Michaelis-Menten model but that the mature data did not conform to first- or second-order kinetic control of respiration through ANT. Maturation from fetal to mature was accompanied by a 2.5-fold increase in ANT protein (by Western blot), with no detectable change in β-F1-ATPase. Northern blot data show that steady-state mRNA levels for ANT and β-F1-ATPase increased ∼2.5-fold from fetal to mature. These data indicate that 1) respiratory control pattern in the newborn is consistent with a kinetic type regulation through ANT, 2) maturational decreases in control through ANT are paralleled by specific increases in ANT content, and 3) regulation of these changes in ANT may be related to increases in steady-state transcript levels for its gene.

Related Organizations
Keywords

Aging, Myocardium, Phosphates, Proton-Translocating ATPases, Oxygen Consumption, Animals, Newborn, Animals, Homeostasis, RNA, Messenger, Energy Metabolism, Mitochondrial ADP, ATP Translocases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!