
arXiv: 2112.00183
Community detection is one of the most important methodological fields of network science, and one which has attracted a significant amount of attention over the past decades. This area deals with the automated division of a network into fundamental building blocks, with the objective of providing a summary of its large-scale structure. Despite its importance and widespread adoption, there is a noticeable gap between what is arguably the state-of-the-art and the methods that are actually used in practice in a variety of fields. Here we attempt to address this discrepancy by dividing existing methods according to whether they have a "descriptive" or an "inferential" goal. While descriptive methods find patterns in networks based on context-dependent notions of community structure, inferential methods articulate generative models, and attempt to fit them to data. In this way, they are able to provide insights into the mechanisms of network formation, and separate structure from randomness in a manner supported by statistical evidence. We review how employing descriptive methods with inferential aims is riddled with pitfalls and misleading answers, and thus should be in general avoided. We argue that inferential methods are more typically aligned with clearer scientific questions, yield more robust results, and should be in many cases preferred. We attempt to dispel some myths and half-truths often believed when community detection is employed in practice, in an effort to improve both the use of such methods as well as the interpretation of their results.
57 pages, 18 figures
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Machine Learning (stat.ML), Physics and Society (physics.soc-ph), Methodology (stat.ME), Statistics - Machine Learning, Physics - Data Analysis, Statistics and Probability, Statistics - Methodology, Data Analysis, Statistics and Probability (physics.data-an)
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Machine Learning (stat.ML), Physics and Society (physics.soc-ph), Methodology (stat.ME), Statistics - Machine Learning, Physics - Data Analysis, Statistics and Probability, Statistics - Methodology, Data Analysis, Statistics and Probability (physics.data-an)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
