Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

DoMY-Seq: A yeast two-hybrid–based technique for precision mapping of protein–protein interaction motifs

Authors: Pau Castel; Ann Holtz-Morris; Yongwon Kwon; Bernhard P. Suter; Frank McCormick;

DoMY-Seq: A yeast two-hybrid–based technique for precision mapping of protein–protein interaction motifs

Abstract

Interactions between proteins are fundamental for every biological process and especially important in cell signaling pathways. Biochemical techniques that evaluate these protein-protein interactions (PPIs), such as in vitro pull downs and coimmunoprecipitations, have become popular in most laboratories and are essential to identify and validate novel protein binding partners. Most PPIs occur through small domains or motifs, which are challenging and laborious to map by using standard biochemical approaches because they generally require the cloning of several truncation mutants. Moreover, these classical methodologies provide limited resolution of the interacting interface. Here, we describe the development of an alternative technique to overcome these limitations termed "Protein Domain mapping using Yeast 2 Hybrid-Next Generation Sequencing" (DoMY-Seq), which leverages both yeast two-hybrid and next-generation sequencing techniques. In brief, our approach involves creating a library of fragments derived from an open reading frame of interest and enriching for the interacting fragments using a yeast two-hybrid reporter system. Next-generation sequencing is then subsequently employed to read and map the sequence of the interacting fragment, yielding a high-resolution plot of the binding interface. We optimized DoMY-Seq by taking advantage of the well-described and high-affinity interaction between KRAS and CRAF, and we provide high-resolution domain mapping on this and other protein-interacting pairs, including CRAF-MEK1, RIT1-RGL3, and p53-MDM2. Thus, DoMY-Seq provides an unbiased alternative method to rapidly identify the domains involved in PPIs by advancing the use of yeast two-hybrid technology.

Country
United States
Keywords

570, Biochemistry & Molecular Biology, Biomedical and clinical sciences, yeast two-hybrid, 1.1 Normal biological development and functioning, Bioinformatics and Computational Biology, Medical and Health Sciences, Open Reading Frames, Underpinning research, Two-Hybrid System Techniques, Genetics, Protein Interaction Domains and Motifs, Amino Acid Sequence, domains, Human Genome, 500, High-Throughput Nucleotide Sequencing, Proteins, Biological Sciences, Biological sciences, protein–protein interaction, Chemical sciences, Chemical Sciences, next-generation sequencing, Biochemistry and Cell Biology, Generic health relevance, Research Article, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold