
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10261/173796
Infectious diseases have been modelled on networks that summarise physical contacts or close proximity of individuals. These networks are known to be complex in both their structure and how they change over time. We present an overview of recent progress in numerically determining the epidemic threshold in temporally-switching networks, and illustrate that slower switching of snapshots relative to epidemic dynamics lowers the epidemic threshold. Therefore, ignoring the temporally-varying nature of networks may underestimate endemicity. We also identify a predictor for the magnitude of this shift which is based on the commutator norm of snapshot adjacency matrices.
LS acknowledges the support provided through the Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/G03706X/1]. LS and NM acknowledge the support provided through JST, ERATO, Kawarabayashi Large Graph Project. KK acknowledges funding from the Ramón y Cajal program of MINECO. KK and VME acknowledge support from projects SPASIMM (FIS2016-80067-P AEI/FEDER, UE) and NOMAQ (FIS2014-60343-P). NM acknowledges the support provided through JST, CREST.
Masuda N., Holme P. (eds).
Peer reviewed
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 39 | |
downloads | 18 |