Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Associations Between Sperm Competition and Natural Variation in Male Reproductive Genes on the Third Chromosome of Drosophila melanogaster

Authors: Beth L. Dumont; Anthony C. Fiumera; Andrew G. Clark;

Associations Between Sperm Competition and Natural Variation in Male Reproductive Genes on the Third Chromosome of Drosophila melanogaster

Abstract

Abstract We applied association analysis to elucidate the genetic basis for variation in phenotypes affecting postcopulatory sexual selection in a natural population of Drosophila melanogaster. We scored 96 third chromosome substitution lines for nine phenotypes affecting sperm competitive ability and genotyped them at 72 polymorphisms in 13 male reproductive genes. Significant heterogeneity among lines (P < 0.01) was detected for all phenotypes except male-induced refractoriness (P = 0.053). We identified 24 associations (8 single-marker associations, 12 three-marker haplotype associations, and 4 cases of epistasis revealed by single-marker interactions). Fewer than 9 of these associations are likely to be false positives. Several associations were consistent with previous findings [Acp70A with the male's influence on the female's refractoriness to remating (refractory), Esterase-6 with a male's remating probability (remating) and a measure of female offspring production (fecundity)], but many are novel associations with uncharacterized seminal fluid proteins. Four genes showed evidence for pleiotropic effects [CG6168 with a measure of sperm competition (P2′) and refractory, CG14560 with a defensive measure of sperm competition (P1′) and a measure of female fecundity, Acp62F with P2′ and a measure of female fecundity, and Esterase-6 with remating and a measure of female fecundity]. Our findings provide evidence that pleiotropy and epistasis are important factors in the genetic architecture of male reproductive success and show that haplotype analyses can identify associations missed in the single-marker approach.

Related Organizations
Keywords

Male, Polymorphism, Genetic, Sex Chromosomes, Reproduction, Homozygote, Chromosome Mapping, Genetic Variation, Spermatozoa, Drosophila melanogaster, Animals, Female, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 1%
hybrid