Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://arxiv.org/pdf/cond-mat/...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1016/s0065-...
Part of book or chapter of book . 2003 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2005
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ground State of Quantum Jahn–Teller Model: Selftrapping vs. Correlated Phonon-assisted Tunneling

Authors: Majernikova, E.; Shpyrko, S.;

Ground State of Quantum Jahn–Teller Model: Selftrapping vs. Correlated Phonon-assisted Tunneling

Abstract

Ground state of the quantum Jahn-Teller model with broken rotational symmetry was investigated by the variational approach in two cases: a lattice and a local ones. Both cases differ by the way of accounting for the nonlinearity hidden in the reflection-symmetric Hamiltonian. In spite of that the ground state energy in both cases shows the same features: there appear two regions of model parameters governing the ground state: the region of dominating selftrapping modified by the quantum effects and the region of dominating phonon-assisted tunneling (antiselftrapping). In the local case (i) the effect of quantum fluctuations and anharmonicity due to the two-mode correlations is up to two orders larger than contributions due to the reflection effects of two-center wave function; (ii) the variational results for the ground state energy were compared with exact numerical results. The coincidence is the better the more far away from the transition region at the E$\otimes$e symmetry where the variational approach fails.

18 pages, 7 figures, published in Adv.in Quantum Chemistry

Keywords

Condensed Matter - Other Condensed Matter, Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Other Condensed Matter (cond-mat.other)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green