Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2002 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Competitive Cofactor Recruitment by Orphan Receptor Hepatocyte Nuclear Factor 4α1: Modulation by the F Domain

Authors: Michael D, Ruse; Martin L, Privalsky; Frances M, Sladek;

Competitive Cofactor Recruitment by Orphan Receptor Hepatocyte Nuclear Factor 4α1: Modulation by the F Domain

Abstract

For most ligand-dependent nuclear receptors, the status of endogenous ligand modulates the relative affinities for corepressor and coactivator complexes. It is less clear what parameters modulate the switch between corepressor and coactivator for the orphan receptors. Our previous work demonstrated that hepatocyte nuclear factor 4alpha1 (HNF4alpha1, NR2A1) interacts with the p160 coactivator GRIP1 and the cointegrators CBP and p300 in the absence of exogenously added ligand and that removal of the F domain enhances these interactions. Here, we utilized transient-transfection analysis to demonstrate repression of HNF4alpha1 activity by the corepressor silencing mediator of retinoid and thyroid receptors (SMRT) in several cell lines and on several HNF4alpha-responsive promoter elements. Glutathione S-transferase pulldown assays confirmed a direct interaction between HNF4alpha1 and receptor interaction domain 2 of SMRT. Loss of the F domain resulted in marked reduction of the ability of SMRT to interact with HNF4alpha1 in vitro and repress HNF4alpha1 activity in vivo, although the isolated F domain itself failed to interact with SMRT. Surprisingly, loss of both the A/B and F domains restored full repression by SMRT, suggesting involvement of both domains in the SMRT interaction. Finally, we show that when coexpressed along with HNF4alpha1 and GRIP1, CBP, or p300, SMRT can titer out HNF4alpha1-mediated transactivation in a dose-dependent manner and that this competition derives from mutually exclusive binding. Collectively, these results suggest that HNF4alpha can functionally interact with both a coactivator and a corepressor without altering the status of any putative ligand and that the presence of the F domain may play a role in discriminating between the different coregulators.

Related Organizations
Keywords

Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Nuclear Proteins, Kidney, Ligands, Phosphoproteins, Binding, Competitive, CREB-Binding Protein, Cell Line, Protein Structure, Tertiary, DNA-Binding Proteins, Mice, Nuclear Receptor Coactivator 2, Hepatocyte Nuclear Factor 4, Genes, Reporter, Chlorocebus aethiops, Animals, Humans, Nuclear Receptor Co-Repressor 2, E1A-Associated p300 Protein, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
bronze