
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Phosphoinositide kinase (PI3K) is activated by various receptors on lymphocytes and regulates development, activation, and tolerance. Genetic ablation of PI3K function in T cells leads to the appearance of autoimmune disorders. In B cells, loss of the class IA regulatory subunit p85alpha causes a partial defect in B cell development and proliferation, whereas loss of p85beta alone causes no apparent changes in B cell function. Here we investigate further the consequences of p85beta deletion in B cells, in the presence or absence of p85alpha. We demonstrate that p85beta partially compensates for loss of p85alpha in B cell development and peripheral survival, with greater defects observed when both isoforms are absent. BCR-mediated AKT phosphorylation is partially reduced in p85alpha-deficient B cells and further diminished with concomitant loss of p85beta. Unexpectedly, loss of p85beta results in increased BCR-mediated proliferation and ERK phosphorylation. These results indicate that the p85beta regulatory isoform has partially overlapping functions with p85alpha in B cells as well as a unique role in opposing BCR responses.
Isoenzymes, Mice, Inbred C57BL, B-Lymphocytes, Mice, Phosphatidylinositol 3-Kinases, Animals, Cell Differentiation, Lymphocyte Activation, Signal Transduction
Isoenzymes, Mice, Inbred C57BL, B-Lymphocytes, Mice, Phosphatidylinositol 3-Kinases, Animals, Cell Differentiation, Lymphocyte Activation, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
