
A robust recursive least square (RRLS) algorithm that has been designed for SISO communications by Bhotto and Antoniou (IEEE Signal Process Lett 18(3):185–188, 2011) is unable to work for MIMO system because of single error constraint. In this paper, a modified version of RRLS algorithm with the application of MIMO channel estimation is introduced. An RRLS algorithm is modified in such a way that it can provide much faster convergence rate in MIMO channel estimation than that of RLS and variable forgetting factor RLS (VFF-RLS) algorithms. Moreover, the optimum forgetting factor is derived for MIMO RRLS in order to minimize the error function. Simulation results show that the MIMO RRLS provides fast convergence performance as compared to RLS and VFF-RLS algorithms without additional multiplication complexity, however, an additional linear term of N in the addition complexity of modified MIMO RRLS does not enhance its computational complexity and keeps it almost equivalent to those of RLS and VFF-RLS algorithms. Moreover, it is observed that the optimum forgetting factor is highly dependent on RRLS scaling parameter, $$E_b/N_o$$, doppler shift and number of antennas.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
