
AbstractDespite SARS-CoV and SARS-CoV-2 being equipped with highly similar protein arsenals, the corresponding zoonoses have spread among humans at extremely different rates. The specific characteristics of these viruses that led to such distinct outcomes remain unclear. Here, we apply proteome-wide comparative structural analysis aiming to identify the unique molecular elements in the SARS-CoV-2 proteome that may explain the differing consequences. By combining protein modeling and molecular dynamics simulations, we suggest nonconservative substitutions in functional regions of the spike glycoprotein (S), nsp1, and nsp3 that are contributing to differences in virulence. Particularly, we explain why the substitutions at the receptor-binding domain of S affect the structure–dynamics behavior in complexes with putative host receptors. Conservation of functional protein regions within the two taxa is also noteworthy. We suggest that the highly conserved main protease, nsp5, of SARS-CoV and SARS-CoV-2 is part of their mechanism of circumventing the host interferon antiviral response. Overall, most substitutions occur on the protein surfaces and may be modulating their antigenic properties and interactions with other macromolecules. Our results imply that the striking difference in the pervasiveness of SARS-CoV-2 and SARS-CoV among humans seems to significantly derive from molecular features that modulate the efficiency of viral particles in entering the host cells and blocking the host immune response.
Proteomics, SARS-CoV-2, Molecular Dynamics Simulation, Viral Proteins, Protein Domains, Severe acute respiratory syndrome-related coronavirus, Species Specificity, Genetics, Animals, Humans, Molecular Biology, Ecology, Evolution, Behavior and Systematics, Discoveries
Proteomics, SARS-CoV-2, Molecular Dynamics Simulation, Viral Proteins, Protein Domains, Severe acute respiratory syndrome-related coronavirus, Species Specificity, Genetics, Animals, Humans, Molecular Biology, Ecology, Evolution, Behavior and Systematics, Discoveries
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
