Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
Pure Amsterdam UMC
Article . 2024
Data sources: Pure Amsterdam UMC
versions View all 4 versions
addClaim

AnyMatch -- Efficient Zero-Shot Entity Matching with a Small Language Model

Authors: Zhang, Zeyu; Groth, Paul; Calixto, Iacer; Schelter, Sebastian;

AnyMatch -- Efficient Zero-Shot Entity Matching with a Small Language Model

Abstract

Entity matching (EM) is the problem of determining whether two records refer to same real-world entity, which is crucial in data integration, e.g., for product catalogs or address databases. A major drawback of many EM approaches is their dependence on labelled examples. We thus focus on the challenging setting of zero-shot entity matching where no labelled examples are available for an unseen target dataset. Recently, large language models (LLMs) have shown promising results for zero-shot EM, but their low throughput and high deployment cost limit their applicability and scalability. We revisit the zero-shot EM problem with AnyMatch, a small language model fine-tuned in a transfer learning setup. We propose several novel data selection techniques to generate fine-tuning data for our model, e.g., by selecting difficult pairs to match via an AutoML filter, by generating additional attribute-level examples, and by controlling label imbalance in the data. We conduct an extensive evaluation of the prediction quality and deployment cost of our model, in a comparison to thirteen baselines on nine benchmark datasets. We find that AnyMatch provides competitive prediction quality despite its small parameter size: it achieves the second-highest F1 score overall, and outperforms several other approaches that employ models with hundreds of billions of parameters. Furthermore, our approach exhibits major cost benefits: the average prediction quality of AnyMatch is within 4.4% of the state-of-the-art method MatchGPT with the proprietary trillion-parameter model GPT-4, yet AnyMatch requires four orders of magnitude less parameters and incurs a 3,899 times lower inference cost (in dollars per 1,000 tokens).

12 pages excluding references, 3 figures, and 5 tables

Country
Netherlands
Keywords

FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Databases, Computer Science - Artificial Intelligence, Databases (cs.DB), Computation and Language (cs.CL)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities