Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Збірник наукових пра...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

КОМП’ЮТЕРНІ МЕТОДИ СТАТИСТИЧНОЇ ОБРОБКИ СИГНАЛІВ

КОМП’ЮТЕРНІ МЕТОДИ СТАТИСТИЧНОЇ ОБРОБКИ СИГНАЛІВ

Abstract

Робота присвячена важливій темі теорії інформаційних систем – теорії і практиці виявлення сигналів у завадах. У будь-якому середовищі на поширення сигналів діють завади, що спотворюють структуру сигналів і, відповідно, інформацію, яку вони несуть. Загальною властивістю сигналів є їх випадковий характер, тому для математичного опису сигналів використовують апарат теорії ймовірностей. Сигнал – носій інформації, якої немає в точці приймання до моменту його прийняття. Оскільки інформація про об’єкт кодується в одному або декількох параметрах сигналу – амплітуді, частоті, фазі, часі затримки, то принаймні один з цих параметрів невідомий для спостерігача. Крім того, наявність завад і шумів, що є випадковими процесами, а також випадкові параметри каналу поширення сигналу зумовлюють потребу в застосуванні методів теорії ймовірностей, теорії випадкових процесів та методів математичної статистики під час проведення досліджень з обробки сигналів. Для математичного опису сигналів і завад використовують ті чи інші моделі випадкових процесів – гауссівські випадкові процеси, негауссівські випадкові процеси із складеним розподілом, негауссівські марковські випадкові процеси. Моделюють випадковий процес заданою багатовимірною щільністю розподілу ймовірностей. В роботі обґрунтовано методологічні принципи обробки сигналів за умов апріорної невизначеності, коли щільність розподілу ймовірностей невідома. В основу статистичної обробки інформаційних параметрів сигналів покладено знаходження таких інформаційних ознак: середніх значень інтервалів, статистичний розподіл вибірки, дисперсії амплітуд. Використовуючи комп’ютерне моделювання в системі Matlab, за допомогою адаптивних алгоритмів проведено генерацію сумішей радіотехнічних завад різних видів. У процесі оброблення за цими алгоритмами також визначено статистичні оцінки параметрів суміші сигналу і завад. Обчислені параметри сигналу використовуються для з’ясування наскільки узгоджена з дослідними даними гіпотеза про те, що невідома характеристика має саме те значення, яке отримане в результаті її оцінювання. Для візуалізації досліджень створено програмний код в системі Matlab з використанням спеціального середовища візуального програмування GUIDE, який дозволяє: генерувати випадкові сигнали з різними формами спектрів завад, демонструвати їх, будувати гістограми та підбирати закони розподілу, що якнайкраще описують випадковий процес. Крім того, в програмі обчислено ймовірність виявлення сигналу і побудовано графік залежності ймовірності виявлення сигналу від ймовірності хибної тривоги і відношення сигналу до шуму при різних обсягах вибірки.

Keywords

статистичної обробка сигналів, HS1-3371, Military Science, U, графічний інтерфейс користувача GUIDE, гауссівські випадкові процеси, система Matlab, негауссівські марковські випадкові процеси, Societies: secret, benevolent, etc., генерація сигналів

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold