
pmid: 32103242
pmc: PMC7192612
Background: DNA methylation is an epigenetic mark with important regulatory roles in cellular identity and can be quantified at base resolution using bisulfite sequencing. Most studies are limited to the average DNA methylation levels of individual CpGs and thus neglect heterogeneity within the profiled cell populations. To assess this within-sample heterogeneity (WSH) several window-based scores that quantify variability in DNA methylation in bisulfite sequencing reads have been proposed. Results: We performed the first systematic comparison of four published WSH scores based on simulated and publicly available datasets. Moreover, we propose two new scores and provide guidelines for selecting appropriate scores to address cell-type heterogeneity, cellular contamination and allele-specific methylation. Most of the measures were sensitive in detecting DNA methylation heterogeneity in these scenarios, while we detected differences in susceptibility to technical bias. Using recently published DNA methylation profiles of Ewing sarcoma samples, we show that DNA methylation heterogeneity provides information complementary to the DNA methylation level. Conclusions: WSH scores are powerful tools for estimating variance in DNA methylation patterns and have the potential for detecting novel disease-associated genomic loci not captured by established statistics. We provide an R-package ( github.com/MPIIComputationalEpigenetics/WSHPackage) implementing the WSH scores for integration into analysis workflows.
Methods Online, Humans, Sarcoma, Ewing, Sequence Analysis, DNA, DNA Methylation, ddc: ddc:
Methods Online, Humans, Sarcoma, Ewing, Sequence Analysis, DNA, DNA Methylation, ddc: ddc:
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 59 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
