
pmid: 30885522
Spinal cord injury (SCI) is a common demyelinating disorder of the central nervous system. The differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), which induce myelination, plays a critical role in the functional recovery following SCI. In this study, the effect of low frequency pulsed electromagnetic field (PEMF) on the differentiation of OPCs and the potential underlying mechanisms were investigated.OPCs were randomly divided into the PEMF and non-PEMF (NPEMF) groups. Immunofluorescence and western blot assays were performed to assess the expression levels of OLs stage-specific markers after 3, 7, 14, and 21 days of PEMF or NPEMF exposure. qRT-PCR was used to further assess the expression levels of miR-219-5p, miR-338, miR-138, and miR-9, which are associated with OPCs differentiation, and the expression levels of genes associated with miR-219-5p. Finally, following PEMF or NPEMF exposure, qRT-PCR and western blot assays were performed to explore the relationship between miR-219-5p and Lingo1 and between miR-219-5p and PEMF in promoting OPCs differentiation.PEMF promoted the differentiation of OPCs. PEMF upregulated the expression level of miR-219-5p and downregulated the expression level of Lingo1 during the differentiation of OPCs. Under PEMF exposure, miR-219-5p targeted Lingo1 and reversed the inhibitory effect of miR-219-5p inhibitor on OPCs differentiation. In addition, PEMF synergized with miR-219-5p to promote OPCs differentiation.Our results, for the first time, indicated that PEMF promoted OPCs differentiation by regulating miR-219-5p activity in vitro.
Oligodendrocyte Precursor Cells, Rats, Sprague-Dawley, MicroRNAs, Electromagnetic Fields, Remyelination, Primary Cell Culture, Animals, Cell Differentiation, Cells, Cultured, Up-Regulation
Oligodendrocyte Precursor Cells, Rats, Sprague-Dawley, MicroRNAs, Electromagnetic Fields, Remyelination, Primary Cell Culture, Animals, Cell Differentiation, Cells, Cultured, Up-Regulation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
