Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nigrostriatal Damage Preferentially Decreases a Subpopulation of α6β2* nAChRs in Mouse, Monkey, and Parkinson’s Disease Striatum

Authors: Tanuja, Bordia; Sharon R, Grady; J Michael, McIntosh; Maryka, Quik;

Nigrostriatal Damage Preferentially Decreases a Subpopulation of α6β2* nAChRs in Mouse, Monkey, and Parkinson’s Disease Striatum

Abstract

Parkinson's disease is a neurodegenerative movement disorder characterized by a loss of substantia nigra dopamine neurons, and corresponding declines in molecular components present on striatal dopaminergic nerve terminals. These include the alpha6beta2(*) nicotinic acetylcholine receptors (nAChRs), which are localized exclusively on dopamine terminals in striatum ((*)denotes the presence of possible additional subunits). In this study, we used a novel alpha-conotoxin MII (alpha-CtxMII) analog E11A to further investigate alpha6beta2(*) nAChR subtypes in mouse, monkey, and human striatum. Receptor competition studies with (125)I-alpha-CtxMII showed that E11A inhibition curves were biphasic, suggesting the presence of two distinct alpha6beta2(*) nAChR subtypes. These include a very high (femtomolar) and a high (picomolar) affinity site, with approximately 40% of the sites in the very high affinity form. It is noteworthy that only the high-affinity form was detected in alpha4 nAChR-null mutant mice. Because (125)I-alpha-CtxMII binds primarily to alpha6alpha4beta2beta3 and alpha6beta2beta3 nAChR subtypes in mouse striatum, these data suggest that the population lost in the alpha4 knockout mice was the alpha6alpha4beta2beta3 subtype. We next investigated the effect of nigrostriatal lesioning on these two striatal alpha6beta2(*) populations in two animal models and in Parkinson's disease. There was a preferential loss of the very high affinity subtype in striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), monkeys treated with MPTP, and patients with Parkinson's disease. These data suggest that dopaminergic terminals expressing the alpha6alpha4beta2beta3 population are selectively vulnerable to nigrostriatal damage. This latter nAChR subtype, identified with alpha-CtxMII E11A, may therefore provide a unique marker for dopaminergic terminals particularly sensitive to nigrostriatal degeneration in Parkinson's disease.

Related Organizations
Keywords

Male, Binding Sites, MPTP Poisoning, Parkinson Disease, Receptors, Nicotinic, Corpus Striatum, Iodine Radioisotopes, Mice, Inbred C57BL, Substantia Nigra, Mice, Protein Subunits, Animals, Humans, Female, Conotoxins, Saimiri, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!