
The levels of oxidatively damaged, carbonylated, proteins increase with the replicative age of yeast mother cells. We show here that such carbonylated proteins are associated with Hsp104p-containing protein aggregates and that these aggregates, like oxidized proteins, are retained in the progenitor cell during cytokinesis by a Sir2p-dependent process. Deletion of HSP104 resulted in a breakdown of damage asymmetry, and overproduction of Hsp104p partially restored damage retention in sir2Δ cells, suggesting that functional chaperones associated with protein aggregates are required for the establishment of damage asymmetry and that these functions are limited in sir2Δ cells. In line with this, Hsp104p and several Hsp70s displayed elevated damaged in sir2Δ cells, and protein aggregates were rescued at a slower rate in this mutant. Moreover, overproduction of Hsp104p suppressed the accelerated aging of cells lacking Sir2p, and drugs inhibiting damage segregation further demonstrated that spatial quality control is required to rejuvenate the progeny.
Saccharomyces cerevisiae Proteins, Saccharomyces cerevisiae, Histone Deacetylases, Oxidative Stress, Sirtuin 2, Mutation, Sirtuins, Oxidation-Reduction, Gene Deletion, Heat-Shock Proteins, Silent Information Regulator Proteins, Saccharomyces cerevisiae, Cytokinesis
Saccharomyces cerevisiae Proteins, Saccharomyces cerevisiae, Histone Deacetylases, Oxidative Stress, Sirtuin 2, Mutation, Sirtuins, Oxidation-Reduction, Gene Deletion, Heat-Shock Proteins, Silent Information Regulator Proteins, Saccharomyces cerevisiae, Cytokinesis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 331 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
