Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Japanese Journal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Japanese Journal of Pharmacology
Article . 1990 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Pollen-Extract Components, Diamines and Derivatives of Feruloylputrescine on Isolated Bladder and Urethral Smooth Muscles of Mice

Authors: K, Nakase; I, Kimura; M, Kimura;

Effects of Pollen-Extract Components, Diamines and Derivatives of Feruloylputrescine on Isolated Bladder and Urethral Smooth Muscles of Mice

Abstract

The contracting or inhibitory effects of pollen-extract components, diamines and derivatives of feruloylputrescine (FP) were investigated on the isolated bladder or urethral smooth muscles of mice. Among the nine diamines (NH2.(CH2)n.NH2, n = 2-10) tested, five of them with shorter carbon chains (n = 2-6) (0.1-30.0 mM) only slightly contracted the bladder strips and to some extent inhibited the noradrenaline (NA, 1.77 microM)-induced contraction of urethral strips. 1,5-Diaminopentane (C5), a component of the pollen-extract, inhibited most effectively the NA-induced contraction of urethral strips with an IC50 value of 2.3 mM (95% confidence limit: 2.0-2.6 mM). FP, also a component of the pollen-extract, inhibited the NA-induced contraction of urethral strips in a non-competitive manner, producing 32.5 +/- 5.5% (N = 5) inhibition at 378 microM. Among the derivatives of FP, feruloylcadaverine inhibited urethral contraction most potently, producing 46.3 +/- 7.1% (N = 5) inhibition at 359 microM. These derivatives had no effect on bladder contraction. In contrast, four diamines with longer carbon chains (n = 7-10) contracted the bladder strips (3-30 mM) and potentiated the NA-induced contraction of urethral strips (10 microM-3 mM). Thus, the components of the pollen-extract, FP and C5, potently inhibited urethral contraction, which may facilitate the discharge of urine in vivo.

Related Organizations
Keywords

Male, Coumaric Acids, Plant Extracts, Urinary Bladder, Mice, Inbred Strains, Muscle, Smooth, Diamines, In Vitro Techniques, Mice, Norepinephrine, Urethra, Cinnamates, Putrescine, Animals, Pollen

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
gold