Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Biomedicine
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An optimal spectroscopic feature fusion strategy for MR brain tumor classification using Fisher Criteria and Parameter-Free BAT optimization algorithm

Authors: Taranjit Kaur; Barjinder Singh Saini; Savita Gupta;

An optimal spectroscopic feature fusion strategy for MR brain tumor classification using Fisher Criteria and Parameter-Free BAT optimization algorithm

Abstract

Abstract In the present work, a fused metabolite ratio is proposed that integrates the conventional metabolite ratios in a weighted manner to improve the diagnostic accuracy of glioma brain tumor categorization. Each metabolite ratio is weighted by the value generated by the Fisher and the Parameter-Free BAT (PFree BAT) optimization algorithm. Here, feature fusion is formulated as an optimization problem with PFree BAT optimization as its underlying search strategy and Fisher Criterion serving as a fitness function. Experiments were conducted on the magnetic resonance spectroscopy (MRS) data of 50 subjects out of which 27 showed low-grade glioma and rest presented high-grade. The MRS data was analyzed for the peaks. The conventional metabolite ratios, i.e., Choline/N-acetyl aspartate (Cho/NAA), Cho/Creatine (Cho/Cr), were quantitated using peak integration that exhibited difference among the tumor grades. The difference in the conventional metabolite ratios was enhanced by the proposed fused metabolite ratio that was duly validated by metrics of sensitivity, specificity, and the classification accuracy. Typically, the fused metabolite ratio characterized low-grade and high-grade with a sensitivity of 96%, specificity of 91%, and an accuracy of 93.72% when fed to the K-nearest neighbor classifier following a fivefold cross-validation data partitioning scheme. The results are significantly better than that obtained by the conventional metabolites where an accuracy equal to 80%, 87%, and 89% was attained. Prominently, the results using the fused metabolite ratio show a surge of 4.7% in comparison to Cho/Cr + Cho/NAA + NAA/Cr. Moreover, the obtained results are better than the similar works reported in the literature.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!