
pmid: 20368622
pmc: PMC2854382
Spinocerebellar ataxia type 5 (SCA5) is an autosomal dominant neurodegenerative disorder caused by mutations in the SPTBN2 gene encoding β-III–spectrin. To investigate the molecular basis of SCA5, we established a series of transgenic Drosophila models that express human β-III–spectrin or fly β-spectrin proteins containing SCA5 mutations. Expression of the SCA5 mutant spectrin in the eye causes a progressive neurodegenerative phenotype, and expression in larval neurons results in posterior paralysis, reduced synaptic terminal growth, and axonal transport deficits. These phenotypes are genetically enhanced by both dynein and dynactin loss-of-function mutations. In summary, we demonstrate that SCA5 mutant spectrin causes adult-onset neurodegeneration in the fly eye and disrupts fundamental intracellular transport processes that are likely to contribute to this progressive neurodegenerative disease.
Male, Spectrin, Axonal Transport, Animals, Genetically Modified, Mutation, Nerve Degeneration, Animals, Humans, Spinocerebellar Ataxias, Drosophila, Female, Research Articles
Male, Spectrin, Axonal Transport, Animals, Genetically Modified, Mutation, Nerve Degeneration, Animals, Humans, Spinocerebellar Ataxias, Drosophila, Female, Research Articles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
