Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bacillus thuringiensisCrylA(a) Insecticidal Toxin: Crystal Structure and Channel Formation

Authors: Grochulski, Pawel; Masson, Luke; Borisova, Svetlana; Pusztai-Carey, Marianne; Schwartz, Jean-Louis; Brousseau, Roland; Cygler, Miroslaw;

Bacillus thuringiensisCrylA(a) Insecticidal Toxin: Crystal Structure and Channel Formation

Abstract

The activated 65 kDa lepidopteran-specific CryIA(a) toxin from the commercially most important strain Bacillus thuringiensis var. kurstaki HD-1 has been investigated by X-ray diffraction and for its ability to form channels in planar lipid bilayers. Its three-dimensional structure has been determined by a multiple isomorphous replacement method and refined at 2.25 A resolution to an R-factor of 0.168 for data with I > 2 delta (I). The toxin is made of three distinct domains. The N-terminal domain is a bundle of eight alpha-helices with the central, relatively hydrophobic helix surrounded by amphipathic helices. The middle and C-terminal domains contain mostly beta-sheets. Comparison with the structure of CryIIIA, a coleopteran-specific toxin, shows that although the fold of these two proteins is similar, there are significant structural differences within domain II. This finding supports the conclusions from genetic studies that domain II is involved in recognition and binding to cell surface receptors. The distribution of electrostatic potential on the surface of the molecule is non-uniform and identifies one side of the alpha-helical domain as negatively charged. The predominance of arginine residues as basic residues ensures that the observed positive charge distribution is also maintained in the highly alkaline environment found in the lepidopteran midgut. Structurally important salt bridges that are conserved across Cry sequences were identified and their possible role in toxin action was postulated. In planar lipid bilayers, CryIA(a) forms cation-selective channels, whose conductance is significantly smaller than that reported for CryIIIA but similar to those of other Cry toxins.

Country
Canada
Keywords

Models, Molecular, Protein Folding, Bacillus thuringiensis Toxins, Protein Conformation, Bacterial Toxins, DNA Mutational Analysis, Lipid Bilayers, Bacillus thuringiensis, Receptors, Cell Surface, crosssector, Crystallography, X-Ray, environmental, Ion Channels, Endotoxins, Hemolysin Proteins, Bacterial Proteins, Mutation, pharmaceutical, Insect Proteins, Pest Control, Biological, Conserved Sequence, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    480
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
480
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!