
AbstractKnowledge of the interaction partners of a protein of interest may provide important information on its function. Common to currently available tools for the identification of protein–protein interactions, however, is their high rates of false positives. Only recently an assay was reported that allowed for the unequivocal identification of protein–protein interactions in mammalian cells in a single experiment. This assay, termed quantitative immunoprecipitation combined with knockdown (QUICK), combines RNAi, stable isotope labeling with amino acids in cell culture, immunoprecipitation, and quantitative MS. We are using the unicellular green alga Chlamydomonas reinhardtii to understand the roles of chaperones in chloroplast biogenesis. The goal of this work was to apply QUICK to Chlamydomonas for the identification of novel interaction partners of vesicle‐inducing protein in plastids 1 (VIPP1), a protein required for the biosynthesis/maintenance of thylakoid membranes and known substrate of chloroplast HSP70B. We report here a robust QUICK protocol for Chlamydomonas that has been improved (i) by introducing a cross‐linking step (‐X) to improve protein complex stability and (ii) by including a control for the correction of unequal immunoprecipitation and/or labeling efficiencies. Using QUICK and cross‐linking we could verify that HSP70B and CGE1 form a complex with VIPP1 and could also demonstrate that chloroplast HSP90C is part of this complex. Moreover, we could show that the chaperones interact with VIPP1 also in membrane fractions.
Proteomics, Chloroplasts, Proteome, Protozoan Proteins, Membrane Proteins, Mass Spectrometry, Peptide Fragments, Gene Knockdown Techniques, Isotope Labeling, Protein Interaction Mapping, Animals, Immunoprecipitation, HSP70 Heat-Shock Proteins, RNA Interference, Trypsin, HSP90 Heat-Shock Proteins, Chlamydomonas reinhardtii, Plant Proteins
Proteomics, Chloroplasts, Proteome, Protozoan Proteins, Membrane Proteins, Mass Spectrometry, Peptide Fragments, Gene Knockdown Techniques, Isotope Labeling, Protein Interaction Mapping, Animals, Immunoprecipitation, HSP70 Heat-Shock Proteins, RNA Interference, Trypsin, HSP90 Heat-Shock Proteins, Chlamydomonas reinhardtii, Plant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
