<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Origin-recognition complex (ORC), a candidate initiator of chromosomal DNA replication in eukaryotes, shares certain biochemical characteristics with DnaA, the initiator of chromosomal DNA replication in prokaryotes. These similarities include origin-specific DNA binding, ATP binding and ATPase activity. DnaA interacts with acidic phospholipids, such as cardiolipin, and its activity is regulated by these phospholipids. In this study, we examined whether Saccharomyces cerevisiae ORC also interacts with phospholipids. Among the various phospholipids tested, ORC was found to bind specifically to cardiolipin. This binding was inhibited by excess concentrations of salts but unaffected by ATP, adenosine 5′-[γ-thio]triphosphate or the origin DNA. Cardiolipin weakly inhibited the ATP-binding activity of ORC, whereas it strongly inhibited ORC binding to origin DNA. Acidic phospholipids other than cardiolipin (phosphatidylglycerol and phosphatidylinositol) weakly inhibited ORC binding to origin DNA. Furthermore, total phospholipids extracted from yeast nuclear membranes inhibited ORC binding to origin DNA. We consider that phospholipids may modulate initiation of DNA replication in eukaryotes in a similar manner to that found in prokaryotes.
Adenosine Triphosphatases, DNA Replication, Binding Sites, Cardiolipins, Nuclear Envelope, Origin Recognition Complex, DNA, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Spodoptera, Transfection, Recombinant Proteins, Cell Line, DNA-Binding Proteins, Kinetics, Animals, Baculoviridae, Phospholipids
Adenosine Triphosphatases, DNA Replication, Binding Sites, Cardiolipins, Nuclear Envelope, Origin Recognition Complex, DNA, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Spodoptera, Transfection, Recombinant Proteins, Cell Line, DNA-Binding Proteins, Kinetics, Animals, Baculoviridae, Phospholipids
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |